取消
清空记录
历史记录
清空记录
历史记录
传统动物心电图测量分析采用体表无创方式,虽操作简单,但是存在测量位置影响大、测量精度不高等局限性,而心外膜表面电极测量心电图操作极为复杂且创伤性大,实验中较少采用。为解决这一难题,Scisence 提供微创的多电极电生理导管,独特设计使研究者能够对生物电在整个心脏的扩散过程进行更为深入的测量和分析。
电生理导管系统由八电极电生理导管、电极分配盒及第三方生物电放大器及刺激器组成。
工作原理:八电极电生理导管上的每对电极均受控于电极分配盒,电极分配盒通过 2mm 针式连接线与第三方生物电放大器或刺激器相连,通过生理记录仪采集对应的电极对引导的电信号数据。八电极电生理导管可用于心脏起搏,电信号记录,进而用于心脏电生理的各方面研究。
电生理导管系统特点
1. 微创八电极电生理导管,可监测心内各个部位的心电信号
2. 可同时引导心内 4 个不同部位的心电信号,可观察心电信号的扩散过程
3. 同一根导管可同时用于采集信号和给予刺激
4. 小鼠 1.1F,电极间距 0.5mm;大鼠 1.9F,电极间距 1.0mm;导管电极间距可定制
5. 聚酰胺材料制作,生物相容性好,兼顾灵活性和刚性,光滑而便于插入
6. 电极分配盒控制每对电极,电极之间互不影响
7. 兼容多种第三方生物电放大器、刺激器、数据采集器,如美国 iWorx 的 iWire-BIOx、IX-RA-834 等
8. 动物实验用,不能用于人体
LabScribe 心电分析模块
1. 测量心电图 R-R、PR、QT、TP、QR、QTc 间隔,QRS、T、P 波宽,P、Q、R、S、T 波幅以及 ST段抬高等数据;
2. 具有具体的分析模板,可准确描绘各波起点、波宽、波幅等;
3. 客户可定制专门的 ECG 模板,以满足自身特殊实验的需要;
4. 可从 R-R 间期、心率、噪音和活动性等方面来划定异常值,从而使分析更准确。
5. 可轻松提取源数据或平均数据作为图片或文本导出;
6. 可选 ASCII 文本导入模块将其他第三方设备采集的 ECG 数据导入本软件进行分析;
LabScribe 进行心电分析
相关文献:
Luo X, et. al. “MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation.” J Clin Invest. 2013 May 1; 123(5): 1939-51
De Jong AM, et. al. “Atrial remodeling is directly related to end-diastolic left ventricular pressure in a mouse model of ventricular pressure overload.” PLoS One. 2013 Sep 6; 8(9): e72651
Guasch E, et. al. “Atrial fibrillation promotion by endurance exercise: demonstration and mechanistic exploration in an animal model.” J Am Coll Cardiol. 2013 Jul 2;62(1):68-77
Cardin S, et. al. “Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure.” Circ Arrhythm Electrophysiol. 2012 Oct; 5(5): 1027-35
Iwasaki YK, et. al. “Determinants of atrial fibrillation in an animal model of obesity and acute obstructive sleep apnea.” Heart Rhythm. 2012 Sep; 9(9): 1409-16.e1
Jiao KL, et. al. “Effects of valsartan on ventricular arrhythmia induced by programmed electrical stimulation in rats with myocardial infarction.” J Cell Mol Med. 2012 Jun; 16(6): 1342-51
Zhou Y, et. al. “Matrine inhibits pacing induced atrial fibrillation by modulating I(KM3) and I(Ca-L).” Int J Biol Sci. 2012; 8(1): 150-8.
Benito B, et. al. “Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training.” Circulation. 2011 Jan 4; 123(1): 13-22
Prestia KA, et al. “Increased Cell-Cell Coupling Increases Infarct Size and Does not Decrease Incidence of Ventricular Tachycardia in Mice.” Front Physiol. 2011 Jan 31; 2(1): 1-7
Aubin MC, et al. “A high-fat diet increases risk of ventricular arrhythmia in female rats: enhanced arrhythmic risk in the absence of obesity or hyperlipidemia.” J Appl Physiol. 2010 Feb; 108: 933-940
Lu Y, et al. “MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation.” Circulation. 2010 Dec; 122(23): 2378-87
Mathur N, et al. “Sudden infant death syndrome in mice with an inherited mutation in RyR2.” Circ Arrhythm Electrophysiol. 2009 Dec; 2: 677-685
传统动物心电图测量分析采用体表无创方式,虽操作简单,但是存在测量位置影响大、测量精度不高等局限性,而心外膜表面电极测量心电图操作极为复杂且创伤性大,实验中较少采用。为解决这一难题,Scisence 提供微创的多电极电生理导管,独特设计使研究者能够对生物电在整个心脏的扩散过程进行更为深入的测量和分析。
电生理导管系统由八电极电生理导管、电极分配盒及第三方生物电放大器及刺激器组成。
工作原理:八电极电生理导管上的每对电极均受控于电极分配盒,电极分配盒通过 2mm 针式连接线与第三方生物电放大器或刺激器相连,通过生理记录仪采集对应的电极对引导的电信号数据。八电极电生理导管可用于心脏起搏,电信号记录,进而用于心脏电生理的各方面研究。
电生理导管系统特点
1. 微创八电极电生理导管,可监测心内各个部位的心电信号
2. 可同时引导心内 4 个不同部位的心电信号,可观察心电信号的扩散过程
3. 同一根导管可同时用于采集信号和给予刺激
4. 小鼠 1.1F,电极间距 0.5mm;大鼠 1.9F,电极间距 1.0mm;导管电极间距可定制
5. 聚酰胺材料制作,生物相容性好,兼顾灵活性和刚性,光滑而便于插入
6. 电极分配盒控制每对电极,电极之间互不影响
7. 兼容多种第三方生物电放大器、刺激器、数据采集器,如美国 iWorx 的 iWire-BIOx、IX-RA-834 等
8. 动物实验用,不能用于人体
LabScribe 心电分析模块
1. 测量心电图 R-R、PR、QT、TP、QR、QTc 间隔,QRS、T、P 波宽,P、Q、R、S、T 波幅以及 ST段抬高等数据;
2. 具有具体的分析模板,可准确描绘各波起点、波宽、波幅等;
3. 客户可定制专门的 ECG 模板,以满足自身特殊实验的需要;
4. 可从 R-R 间期、心率、噪音和活动性等方面来划定异常值,从而使分析更准确。
5. 可轻松提取源数据或平均数据作为图片或文本导出;
6. 可选 ASCII 文本导入模块将其他第三方设备采集的 ECG 数据导入本软件进行分析;
LabScribe 进行心电分析
相关文献:
Luo X, et. al. “MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation.” J Clin Invest. 2013 May 1; 123(5): 1939-51
De Jong AM, et. al. “Atrial remodeling is directly related to end-diastolic left ventricular pressure in a mouse model of ventricular pressure overload.” PLoS One. 2013 Sep 6; 8(9): e72651
Guasch E, et. al. “Atrial fibrillation promotion by endurance exercise: demonstration and mechanistic exploration in an animal model.” J Am Coll Cardiol. 2013 Jul 2;62(1):68-77
Cardin S, et. al. “Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure.” Circ Arrhythm Electrophysiol. 2012 Oct; 5(5): 1027-35
Iwasaki YK, et. al. “Determinants of atrial fibrillation in an animal model of obesity and acute obstructive sleep apnea.” Heart Rhythm. 2012 Sep; 9(9): 1409-16.e1
Jiao KL, et. al. “Effects of valsartan on ventricular arrhythmia induced by programmed electrical stimulation in rats with myocardial infarction.” J Cell Mol Med. 2012 Jun; 16(6): 1342-51
Zhou Y, et. al. “Matrine inhibits pacing induced atrial fibrillation by modulating I(KM3) and I(Ca-L).” Int J Biol Sci. 2012; 8(1): 150-8.
Benito B, et. al. “Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training.” Circulation. 2011 Jan 4; 123(1): 13-22
Prestia KA, et al. “Increased Cell-Cell Coupling Increases Infarct Size and Does not Decrease Incidence of Ventricular Tachycardia in Mice.” Front Physiol. 2011 Jan 31; 2(1): 1-7
Aubin MC, et al. “A high-fat diet increases risk of ventricular arrhythmia in female rats: enhanced arrhythmic risk in the absence of obesity or hyperlipidemia.” J Appl Physiol. 2010 Feb; 108: 933-940
Lu Y, et al. “MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation.” Circulation. 2010 Dec; 122(23): 2378-87
Mathur N, et al. “Sudden infant death syndrome in mice with an inherited mutation in RyR2.” Circ Arrhythm Electrophysiol. 2009 Dec; 2: 677-685